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Meaningful low-dimensional representations of dynamical processes are essential to better understand
the mechanisms underlying complex systems, from music composition to learning in both biological
and artificial intelligence. We suggest to describe time-varying systems by considering the evolution of
their geometrical and topological properties in time, by using a method based on persistent homology. In
the static case, persistent homology allows one to provide a representation of a manifold paired with a
continuous function as a collection of multisets of points and lines called persistence diagrams. The idea
is to fingerprint the change of a variable-geometry space as a time series of persistence diagrams, and
afterwards compare such time series by using dynamic time warping. As an application, we express some
music features and their time dependency by updating the values of a function defined on a polyhedral
surface, called the Tonnetz. Thereafter, we use this time-based representation to automatically classify
three collections of compositions according to their style, and discuss the optimal time-granularity for the
analysis of different musical genres.

Keywords: Tonnetz; topology; time-series analysis; persistent homology; dynamic time warping; classi-
fication; style
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1. Introduction

A time-varying system can be interpreted as a series of relevant geometric and topological
events. Persistent homology has mainly been applied to the study of static point clouds and
shapes (Edelsbrunner and Harer 2009), by providing a description of both the geometry and
topology of the analyzed space. One of the reasons that make persistent homology so effective
when applied to the study of static spaces is that it provides a representation in which the features
of the space appear arranged by relevance. Thus, the analysis can be tuned on a specific applica-
tion need, by balancing the computational cost and the retrieval of details. Briefly one can think
about persistent homology as a scalable fingerprint of a static object.

Persistent homology has been generalized to time-varying systems either by considering
continuous representations (Cohen-Steiner, Edelsbrunner, and Morozov 2006), or introducing
statistics, in order to evaluate the evolution in time of the analyzed system (Munch 2013; Turner
et al. 2014).
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A time series is a collection of values obtained through subsequent observations in time. Time-
series data mining (Esling and Agon 2012) is an attempt to organize data, in furtherance of
visualizing the contour of data, avoiding negligible details and creating a consistent, interpretable
representation. Due to their generality and flexibility, time series are extensively used in appli-
cations, e.g. classification (Bakshi and Stephanopoulos 1994), segmentation (Keogh et al. 2004),
and supported by a strong theoretical framework (Keogh and Kasetty 2003).

We suggest to combine the scalability (among other properties) of persistent homology and the
notion of time series, in order to characterize the evolution of a variable-geometry space in time.
We will discuss how this representation allows one to distinguish between relevant and noisy
observations by utilizing the natural notion of distance defined in the context of persistent homol-
ogy as a cost function (Senin 2008). In addition, the computation of the dissimilarity between
time series (Liao 2005) will allow us to compare several time-varying systems; i.e. to find the
timespans (if they exist) where two time series can be considered comparable in agreement with
their time-dependent geometric and topological characterization.

As an application, we consider a variable-geometry polyhedral surface T inspired by the
Tonnetz, a graph widely used in computational musicology to represent the relationships
among notes. We will perform automatic stylistic clustering of three collections of classical,
jazz, and pop songs, by updating the geometry of T according to the information deduced
from a certain composition, and therefore computing the associated time series of persistence
diagrams.

2. Persistent homology background

In computational topology (Edelsbrunner and Harer 2009), persistent homology provides a mul-
tiscale description of the topology of a given space. The efficacy and versatility of this technique
is demonstrated by its numerous and diverse applications. See Ferri (2017) for a review. In
the remainder of this section, we will provide a basic intuition of homology and persistent
homology.

2.1. Homology

Homology is a standard theory in Algebraic Topology first described in Poincaré (1895). Here
we will give an intuition about homology and limit ourselves to discuss the basic concepts and
definitions needed in the remainder of this work. However, homology can be defined in more gen-
eral settings. We refer the reader to Munkres (1984) and Hatcher (2002) for a detailed, rigorous
description.

The extremely simplified view on homology needed for the understanding of what follows is
that it allows one to map a topological space X (think of a manifold for simplicity) to a sequence
of algebraic objects, here vector spaces denoted by Hi(X ) for every i ∈ Z. Although Hi(X ) are
not always vector spaces, it is possible to achieve this structure by computing homology with
coefficients in a field. We compute homology in Z/2Z. See Munkres (1984), Hatcher (2002)
and Bergomi (2015) (Part 1, Chapter 2), for more details. The dimension of the vector space
Hi(X ) counts the number of i-dimensional holes of X. Thus, dim(H0(X )) corresponds to the
number of connected components of X, the dimension of H1(X ) to the number of holes, H2(X )

voids, and so on. We define the i-Betti number associated with X as βi(X ) = dim(Hi(X )), or
simply βi when no confusion arises. See Figure 1 for an example.
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Figure 1. An intuition on Betti numbers. For each of the four example spaces, the 0-Betti number β0 counts the
number of connected components, while β1 counts 1-dimensional holes. (a) β0 = 1,β1 = 0. (b) β0 = 2,β1 = 0. (c)
β0 = 1,β1 = 1 and (d) β0 = 2,β1 = 1.

2.2. Persistent homology

Clearly, the computation of the Betti numbers associated with a certain space X causes a huge
loss of information. Persistent homology allows us not only to alleviate, but control this phe-
nomenon, by considering the evolution of the Betti numbers on a filtration of X, i.e. a sequence
of nested spaces starting with the empty set and ending with the entire space X.

2.2.1. Filtering functions

Let X be a triangulable manifold and f : X → R a continuous function. A filtration of X is
defined as a collection of nested sublevel sets Xu = f −1((−∞, u]), u ∈ R. The function f is
called a filtering function or simply a filter.

The choice of f depends on the geometric property of X one wants to take into account. To
understand how the choice of a filtering function alters the representation of a given space, it is
necessary to introduce the following definition. A real number r is a regular homological value
for the pair (X , f ) if it exists ε > 0 such that for every pair of real numbers x < y in (r − ε, r + ε),
the homology of Xx is isomorphic to the one of Xy. For the purposes of this manuscript, one can
simply think that Xx and Xy have the same Betti numbers. Otherwise r is said to be a homological
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critical value of (X , f ). See Govc (2013) for details. A filtering function with a finite number
of homological critical values {a1, . . . , an}, finite i-Betti numbers for each sublevel set Xak , k ∈
{1, . . . , n} and i ∈ Z is said to be tame.

We can now consider the filtration

∅ ⊆ Xa1 ⊆ Xa2 ⊆ · · · ⊆ Xan = X ,

compute the Betti numbers associated with each sublevel set, and observe their evolution
throughout the filtration. The scale at which a feature is significant is measured by considering
its longevity (i.e. persistence) along the filtration.

2.2.2. Persistence diagrams

All the information carried by this analysis can be summarised in a simple and computationally
efficient form. We do this by enumerating the values of birth and death of each component that
produces a change in the Betti numbers along the filtration. Let us denote each of these points
by (bi, di). The multiset (a set whose elements can be repeated) D = {(bi, di)}i∈{1,...,m} is called
persistence diagram. Graphically, a persistence diagram is represented as a collection of points
in R

2 with the following characteristics:

(1) di ≥ bi for every (bi, di) ∈ D. This condition means that a n-dimensional hole cannot die
before it is born.

(2) The ordinate di can be infinite. It is indeed possible that a n-dimensional hole that is born
along the filtration never dies.

The points of the persistence diagram are called cornerpoints; points of the form (bi, ∞) with
infinite lifespan are said to be cornerlines and graphically rendered as vertical half lines. The
distance of a cornerpoint from the diagonal is its persistence. See Figure 2(a,b) for an example.
In the figure, observe how the local minima a2 and a4, when merging with the maxima a3 and a5

give rise to cornerpoints with different persistence, because a3 − a2 < a5 − a4. Finally, observe
that more cornerpoints can have the same coordinates. This generally reflects the presence of
symmetries of the analyzed space with respect to the filtering function. Set of overlapping cor-
nerpoints are considered as a single cornerpoint with multiplicity equal to the cardinality of the
set.

2.2.3. Bottleneck distance

The bottleneck distance (d’Amico, Frosini, and Landi 2006) is naturally a metric between
persistence diagrams defined as

dB(D, D′) = min
σ

max
p∈D

d(p, σ(p)),

where D and D′ are two kth persistence diagrams, σ varies among all the bijections between D
and D′, and

d
(
(u, v) ,

(
u′, v′)) = min

{
max

{|u−u′|, |v − v′|} , max

{
v − u

2
,

v′ − u′

2

}}
,

for every (u, v), (u′, v′) ∈ {(x, y) ∈ R
2 : x ≤ y}.

The bottleneck distance is the most used metric to compare persistence diagrams, because
of its properties of optimality (d’Amico, Frosini, and Landi 2010) and stability (Cohen-Steiner,
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Figure 2. Panel (a): persistent homology induced by the sublevel sets of the height function f on the space X.
{ai}i∈{1,...,5} are the ordinates of local maxima and minima of f : X → R. The 0-persistence diagram on the right
of the panel shows the evolution of the 0-Betti number (number of connected components) throughout the filtration
f −1((−∞, ai]). The integer numbers reported in the persistence diagram correspond to the value of the 0-persistent Betti
number function for every (u, v) ∈ R

2. For instance, before the sublevel set f −1((−∞, a1]) is reached, no connected
component exists. For values a2 ≤ f (x) < a3 two connected components exist. Those will merge in a single connected
component once a3 is reached. The cornerline of coordinates (a1, ∞) is associated with the connected component cor-
responding to the absolute minimum of f with value a1. Each step of the filtration is depicted in Panel (b). Panel (c): a
variation X ′ (in orange) of the space X of Panel (a). The variation is detected by the 0-persistence diagram and high-
lighted in orange. The filtration associated with (X ′, f ) is illustrated in Panel (d). (a) 0-persistence diagram. (b) Sublevel
set filtration of X with respect to f. (c) A variation X ′ of the space X and its 0-persistence diagram and (d) Sublevel set
filtration of X ′ with respect to f.

Figure 3. (a) Two persistence diagrams. (b) Cornerpoints are matched by choosing to the bijection that minimises the
sum of the distances. Observe how one of the cornerpoints represented as triangles is matched with its projection on the
diagonal. (a) Persistence diagrams and (b) Matching.

Edelsbrunner, and Harer 2007). See Figure 3 for an intuition. It should be clear from the figure
that in order to measure the distance between two persistence diagrams with a different number
of cornerpoints, it is necessary to consider bijections that map some cornerpoints placed on the
diagonal, i.e. with zero persistence.
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Figure 4. (Left) An example of vineyard. The axes represent the time t, the birth level b and the death level d of the
k-homology classes of a system evolving in time. Vines are represented as continuous paths. (Right) Persistence diagrams
associated with evenly spaced observations of a time-varying system.

2.3. Time-varying systems

A change of the geometry of a shape corresponds to an update of its persistence diagrams.
This update encodes the relevance of change in time, with respect to the filtering function.
See Figure 2.

Persistent homology has been generalized to the study of time-varying systems
in Cohen-Steiner, Edelsbrunner, and Morozov (2006). Let f , g : X → R be tame functions,
I = [0, 1] ⊂ R and H : X × I → R a homotopy between f and g, i.e. a continuous deformation
between f and g. See Hatcher (2002) for more details on homotopy theory. Assuming that H(x, t)
is tame for every t ∈ I, we obtain a k-persistence diagram for every pair (t, k) ∈ I × Z, named
a vineyard. In this representation, each cornerpoint is associated with a trajectory called a vine
(cornerlines can be seen as cornerpoints (u, v), such that v � u). See Figure 4 for an example.

3. Persistence time series

Vineyards are powerful tools for describing time-varying systems. Indeed, given a time-varying
system (X , t) they encode the changes in time of the homological critical values induced by a
given filtering function. However, their interpretation is not intuitive, and there is not a general
technique that allows one to compare vineyards associated with two time-varying systems.

Let X be a topological space, f : X × I → R a tame function for every t ∈ I, and t =
{ t0, . . . , tn } a set of (n + 1) evenly spaced points of I. A k-persistence diagram Dk(X , f )i

is associated with every ti ∈ t. The collection of these k-persistence snapshots is a time
series Dk,n(X , f ) = { Dk(X , f )i }n

i=0 ⊂ D∞, where (D∞, dB) is the space of persistence diagrams
equipped with the bottleneck distance. We name Dk,n(X , f ), or simply D(X , f ), a k-persistence
time series.

There exist several methods to evaluate the dissimilarity of two time series (Liao 2005; Esling
and Agon 2012; Lines and Bagnall 2015). Here, we will consider Dynamic Time Warping
(DTW) (Berndt and Clifford 1994; Senin 2008). One of the most important features of DTW
is that it allows us to align, and hence measure the dissimilarity between time series of different
lengths, by providing their global optimal warping.

3.1. Dynamic time warping

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two time series, where n, m ∈ N. The first ingre-
dient needed for the computation of the optimal warping path between X and Y is a measure of
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dissimilarity between pairs of observations. The DTW algorithm will align the two time series
by rearranging their points, in order to minimise their global dissimilarity.

Let us assume that the observations of both time series belong to a space �, said to be the
feature space. The dissimilarity function, or cost function, is defined as c : � × � → R, such
that

(1) c(x, y) ≥ 0 for all observations x, y ∈ �;
(2) c(x, y) = 0 if and only if x = y.

Observe that a cost function is not necessarily a metric.
The second step is the construction of the local cost matrix C ∈ R

n×m, whose entries are
defined as Cij := c(xi, yj), for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. A warping path γ = (γ1, . . . , γl)

is a sequence of pairs of indices γk = (ik , jk), where ik ∈ {1, . . . , n}, jk ∈ {1, . . . , m} and k ∈
{1, . . . , l}, such that the following conditions hold:

(1) γ1 = (1, 1) and γl = (m, n) for every l ∈ N. This condition simply states that the starting and
ending observations of the two time series have to be aligned, i.e. we are aligning the two
time series globally.

(2) Given γk = (ik , jk) and γk+1 = (ik+1, jk+1), we have ik ≤ ik+1 and jk ≤ jk+1. This condition
ensures that the natural ordering induced by time on the observations is preserved.

(3) The difference between two subsequent steps in the warping path γk+1 − γk ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}. This last condition constrains the size of the shifts in time used
to align the two time series.

The total cost of a (n, m)-warping path γ over the observations of X and Y is defined as

cγ (X , Y ) :=
l∑

k=1

c(xik , yjk ).

An optimal warping path on X and Y is a warping path realising the minimum total cost. We are
now ready to define the DTW distance between X and Y :

DTW(X , Y ) := min
{

cγ (X , Y )
∣∣ γ is a

}
(n, m)-warping path.

Note that the minimum always exists because the set is finite. In Figure 5, a simple example of
global alignment of time series via DTW is depicted.

3.2. DTW for persistence time series

When considering persistence time series, the bottleneck distance can be used as a cost function.
Let Dk,n(X , f ) and Dk,m(Y , g) be two kth persistence time series. By definition, the bottleneck
distance satisfies the properties that characterize a cost function. The DTW between k-persistence
time series is given by an optimal warping path defined as:

DTW (D(X , f ),D(Y , g))

= min
{

dBγ
(D(X , f ),D(Y , g))

∣∣ γ is an (n, m) − warping path
}

.

The DTW inherits the symmetry by the bottleneck distance, and the tameness of f and g assures
stability of every diagram D(X , fi) and D(Y , gj), for every i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.
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Figure 5. (a) Two time series of length 5 and 4, respectively. (b) The cost matrix and optimal warping path between
the two time series.

Consider the prefix sequences Dk,α(X , f ) and Dk,β(Y , g), where α ≤ n and β ≤ m are natural
numbers. The accumulated cost matrix is defined as

A (α, β) := DTW
(Dk,α(X , f ),Dk,β(Y , g)

)
.

Then A (n, m) = DTW
(Dk,n(X , f ),Dk,m(Y , g)

)
.

4. Musical setting

Music, or at least some of its features, can be represented using a variable-geometry space. Before
illustrating our model, it is necessary to introduce some basic definitions.

A note in equal tuning, denoted by n, can be modeled as a pair (p, d) ∈ R
2, where p is its pitch,

and d its duration in seconds. In particular, if ν denotes the fundamental frequency of n, we have
p(ν) = 69 + 12 log2(ν/440), where 440 Hz is the fundamental frequency of the A of the fourth
octave of the piano (Cheveignéde 2005).

Perceptively, two notes an octave apart are really similar (Burns and Ward 1999), thus, it is a
common practice in computational musicology to identify pitches modulo octave, by considering
pitch-classes [p] = { p + 12k : k ∈ Z } ∼= R/12Z. See Figure 6 for a representation of both the
pitch and pitch-class spaces.

4.1. A 3-dimensional, variable-geometry Tonnetz

Originally, the Tonnetz was described as a graph representing the harmonic relationships among
pitches, see for instance in Euler (1774). Later, it has been largely redefined, and generalized to
several formalisms (Cohn 1997; Žabka 2009; Douthett and Steinbach 1998). We will consider
the simplicial complex interpretation of the Tonnetz originally given in Bigo et al. (2013). In this
setting, the Tonnetz is modeled as an infinite planar simplicial complex, whose 0-simplices (i.e.
vertices) are labeled with pitch-classes, 1-simplices (i.e. edges) connect vertices whose labels
form either perfect fifth, major, and minor third intervals. The labels associated with the vertices
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Figure 6. Fundamental music representation spaces. On the left pitches are visualized as points on the real line. The
pitch-class space is visualized on the right.

Figure 7. On the left, a finite subcomplex of the planar Tonnetz T. On the right, the Tonnetz torus T.

of 2-simplices (i.e. triangles) correspond to either major or minor triads. A finite subcomplex of
the Tonnetz T is depicted in Figure 7(left). We observe that the labels on its vertices are periodic
with respect to the transposition of both minor and major third. This allows one to generate the
finite toroidal representation T displayed in Figure 7(right).

It is possible to analyze and classify music by considering the subcomplexes of T generated by
a sequence of pitch-classes (Bigo et al. 2013). However, this approach does not allow us to dis-
criminate musical styles in a geometric or topological sense. Indeed, as the example in Figure 8
shows, two perceptively distinct sonorities can be represented by isomorphic subcomplexes.

Imagine the planar Tonnetz as embedded in R
3. Then, the information concerning the har-

monic relationships and the temporal hierarchy (durations) of notes in a musical phrase can be
expressed by displacing the vertices of the Tonnetz along the axis normal to its surface. More-
over, music is often organised in bars. For instance, modulations generally occur every four or
eight bars in a jazz context, and oftentimes melodic lines are arranged in a question and answer



10 M.G. Bergomi and A. Baratè

Figure 8. Two different modes represented by isomorphic subcomplexes of the Tonnetz. The subcomplexes are built
by considering the simplices whose vertices and edges form a 2-clique community (triangles sharing an edge), such that
vertices are labelled with all the pitches belonging to the chosen modal scale. (a) The lydian mode. (b) The locrian mode.
(c) Ionian subcomplex and (d) Locrian subcomplex.

paradigm consisting of cycles of two or four bars in pop music. The idea is to take into account
this natural segmentation to create a windowing of a given composition.

In the following paragraphs, we will describe how to create deformed versions of the pla-
nar Tonnetz by considering the pitch-classes and duration of the notes used in a composition.
Thereafter, we will show how the evolution in time of a composition can be taken into account,
generating a time-varying Tonnetz.

4.1.1. Deformation of the Tonnetz

We start by recalling that in our notation the planar Tonnetz is denoted by T, while T is the symbol
used for its toroidal representation. Let V be the set of vertices of T. Consider the simplest case
of a finite collection of notes P = {n1, . . . , nm} = {(p1, d1), . . . , (pm, dm)}, where p and d are the
pitch and duration of each note. Assume that {ni1 , . . . , nik }, k ∈ N , k ≤ m, is the subset of notes
in P whose pitch belongs to the same pitch-class. Then, for every pitch-class [p], we define a
function

h : V[p] ⊂ R
3 → R

3

(xv, yv, 0) �→ (xv, yv, dvi),

where V[p] ⊂ V is the subset of vertices of T labeled with [p], dvi = ∑m
j=1 di

lj
. The function h

sums the durations of notes whose pitch belong to the same pitch-class. This can be visualised
as a deformation T of the planar Tonnetz as depicted in Figure 9, panel (a). More importantly, by
linear extension, it defines an ordering on the simplices of T, that allows us to induce a filtration
on the finite simplicial complex T. The filtration on T is consequently finite, i.e. with a finite
number of homological critical values. Always in Figure 9 the configurations of a maximum,
a minimum and a saddle on the geometrical realization of a portion of the deformed Tonnetz
are depicted. Observe that, in our case a maximum or minimum can be a whole subcomplex of
connected pitch-classes, whose vertices share the same height. A saddle can be created by playing
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Figure 9. (a) The Tonnetz deformed with a major triad that appears as a 2-simplex corresponding to a maximum of the
height function. Panels (b–d) represent critical points of the height function defined the deformed Tonnetz and used to
induce a filtration on its toroidal counterpart T. (b) Minimum. (c) Maximum and (d) Saddle.

a chromatic cluster of three notes (Cohn 1997). The musical interpretation of these configurations
and how they shape the persistence diagrams computed on the filtration induced on T will be
discussed in the following section.

4.1.2. The time-varying Tonnetz

Let Q = {Q0, . . . , Qs} be a composition consisting of s + 1 bars and w ∈ N be the number of bars
per window we want to consider. Let us denote each window by Pi = Qi ∪ Qi+1 ∪ · · · ∪ Qi+w−1.
Then, Q = ∪Pi. We can now apply the procedure described in the previous paragraph to every
Pi, obtaining a time series whose observations are a deformed configuration of the Tonnetz. For
the sake of intuition, a 3-dimensional interactive animation showing how the Tonnetz is deformed
by a musical phrase is available at this link.1

The collection of deformed Tonnetze {Ti} associated with a composition will be the core of the
following topological analysis. The assumption is that, given a composition, a meaningful and
sufficiently refined windowing allows one to generate an accurate fingerprint of its compositional
style.

5. Musical interpretation and applications

The geometry and topology of a deformed Tonnetz T can be considered as musical descrip-
tors (Casey et al. 2008), and analyzed with persistent homology by defining the height function f

1 https://mgbergomi.github.io/html/def_ton_and_sounds/examples/deformed_tonnetz_int_sound_pers.html
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Figure 10. The first six observations of the 0-persistence time series. Klavierstück I – Schönberg. Persistence snapshots
are taken every 8 bars.

on T to induce a lower level set filtration on the torus T. The usage of the height function guar-
antees the invariance of the persistence diagrams modulo musical transposition, see Bergomi,
Baratè, and Di Fabio (2016), where persistent homology has been used to fingerprint com-
positions as static shapes. However, this static representation does not take into account the
time-dependent nature of music. We believe that persistence time series are a more natural and
finer tool for the analysis of music. Indeed, this approach makes it possible to detect local relevant
phenomena encoded in the progressive geometric update of the deformed Tonnetz. In the follow-
ing applications, we will consider time series whose ith observation consists of the 0-persistence
diagram associated with the space Ti defined in the previous section.

First of all, it is necessary to provide an interpretation of the music features represented as a
persistence diagram.

In Figure 10, a sequence of six 0-persistence diagrams computed considering an 8-bar win-
dowing of Schönberg’s Klavierstück I is depicted. Consider the first diagram of the first row of
the figure: a cornerline reveals the connected nature of T and represents the absolute minimum of
the height function. This minimum corresponds to the subcomplex of the Tonnetz that is less used
in the composition. The cornerpoint highlights the presence of a second minimum of the height
function associated with a subcomplex of T which is disconnected from the first one. In musical
terms, the presence of these two connected components can be associated with the atonal nature
of the piece. The lifespan of the cornerpoint measures the relevance of this stylistic feature. The
remainder of the observations describe the changes in terms of death and birth levels of these
connected components. Moreover, the growth of the birth levels of the points of the whole mul-
tiset grabs the homogeneous gain of height of the entire simplicial complex, in time. This means
that the whole chromatic scale is uniformly used in the composition, both in terms of pitches and
duration of the notes. The low relative distance between cornerpoints represents the evenness,
in terms of usage, of dissonant intervals during the composition: we recall how a saddle can be
formed by playing three notes at a half-tone distance.

We are now ready to align two k-persistence time series, compute their dissimilarity and their
optimal warping path.
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Figure 11. (Left) Dynamic time warping between persistence time series associated with two compositions A and
B. Observations are labelled according to a 4-bars windowing. (Right) Optimal warping path between two versions
of Caravan. The positions of the gaps correspond to the solo parts of the longer version (frames 25–50 and 51–65,
respectively). (a) Optimal warping path and (b) Two versions of Caravan.

5.1. Optimal warping path

The first step in the calculation of an optimal warping path, given two kth persistence time
series, is the computation of the pairwise bottleneck distance between their observations. The
low dimensionality and simple structure of T assure that this normally computationally hard task
can be performed in a reasonable amount of time.

In musical terms, an optimal warping path returns the comparable regions of the two compo-
sitions, represented by similar persistence diagrams with respect to the bottleneck distance. In
other words, time regions of the compositions that share a similar use of the entire set of pitch-
classes (cornerline), or disconnected intervals on the Tonnetz both in terms of relevance (distance
from the diagonal of the cornerpoints), and in a balanced or unbalanced way (relative distance
and multiplicity of the cornerpoints), are aligned in an optimal warping path. In Figure 11(a), two
persistence time series associated with the compositions A and B are represented by piecewise
line segments and their observations are labelled according to a 4-bars windowing. The thick
line represent an optimal warping path. The first twelve bars of A are associated with the first
four bars of B, in the figure an optimal warping path connects the entries (1, 1) and (1, 3) of the
accumulated cost matrix. Symmetrically, the two last observations of A are associated with the
last one of B. In this region, the warping path is represented by a vertical line segment. Diagonal
line segments highlight regions of the two compositions that can be aligned with a reasonable
cost with respect to the bottleneck distance, and hence, share similar topological features.

In the following applications, we use DTW to compute the dissimilarity between 0-persistence
time series associated with three datasets composed by classical, pop, and jazz compositions,
respectively. In Figure 12, the dissimilarity scores computed by aligning the compositions
belonging to the datasets are depicted.

Classical dataset: Observe the first row of the figure. The pieces of the dataset are listed
in Table 1. Proceed by reading the matrix from top to bottom. Both Schönberg’s compositions
(we will denote them by DK11-1 and DK11-2) gave high dissimilarity score when aligned with
the tonal pieces. The first row of the matrix represents the dissimilarity scores computed by com-
paring DK11-2 with the other compositions of the dataset. The two minimal scores we retrieved
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Figure 12. Alignment score of 0-persistence time series for different datasets and variable windowing. The size of the
circles associated with each pair of pieces depends on their alignment score. (a) Classic Music (8 bars windowing). (b)
Classic Music (4 bars windowing). (c) Pop Music (4 bars windowing). (d) Pop Music (2 bars windowing). (e) Jazz Music
(8 bars windowing) and (f) Jazz Music (4 bars windowing).

are obtained by comparing DK11-2 with the compositions by Debussy and Ravel. In general,
when compared to the rest of the dataset DK11-1 obtains smaller dissimilarity scores, however,
they are sufficient to segregate it from the tonal pieces. The corresponding results, depicted in
the distance matrix on the left, do not differ greatly from the one we just discussed. However
the tonal traces left in DK11-1 are highlighted by the finer windowing we considered. The same
consideration holds for the scores realized by Jeux d’Eau. The surprisingly low score generated
by its alignment with the second movement of Beethoven’s sonata changes by considering a
4-bars windowing. In this case the composition by Ravel is segregated from the others, while
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Table 1. Summary of the compositions of the classical music
dataset.

Composition Movements Author

Sonata n. 27 1, 2, 3 Beethoven
Arabesque Debussy
Sonata n. 8 1, 2 Mozart
Jeux d’Eau Ravel
Klavierstück I, II Schönberg

Table 2. Jazz dataset. Notation: B.B. arr. stands for big band arrangement, chrom. for
chromatic and Man. guit. for manouche guitar.

Label Ensemble Style

Caravan-js 4 Gtrs, Org, Kora, Bgtr B.B. arr., no solo
Caravan-md Tpt, Pf, Bgtr Rich solos and tensions
Fly-bz Bgtr, Vib, Kora, Pf B.B. arr., chrom. solos
Fly-dc Flt, Tnr & Bar Sax, F Hn, Org, Gtr B.B. arr., Man. guit.
Fly-gw Big Band B.B. arr.
How-gr 2 Obss, 2 Gtrs, Bgtr Man. guit.
How-jh Pf, Bgtr Chrom. solo
How-mw Tpt, Gtr, Bgtr, Str, Pf Embellishments, chrom.

the second movement of the sonata n. 27 obtains a surprisingly low dissimilarity score when
aligned with DK11-1. The tonal and pentatonic compositions are highlighted as similar in both
representations.

Pop dataset: In both diagrams, the two Aguilera’s pieces appear to be well separated from the
others. Sting’s Fields of Gold and If You Love Somebody Set Them Free turn out to be similar to
the pieces by McCartney. It is not the case for Fortress Around Your Heart that recollects high
dissimilarity scores when aligned to the other songs of the dataset. It is interesting to note how
the two distance matrices are almost invariant with respect to the change of windowing.

Jazz dataset: The classification of jazz standards is a difficult task due to the improvisational
nature of this genre. We considered a dataset composed of two versions of Caravan and three
versions of Fly Me to the Moon and How High the Moon, respectively. Each interpretation is
characterised by different choices in terms of ensemble and arrangements. We summarised these
features in Table 2 by denoting a big band arrangement (breaks, horns fills, etc.) as B.B. arr.,
pointing out the presence of solo parts, their main features, and particular stylistic choices.

The dissimilarity scores computed by considering the global pairwise alignment of the persis-
tence time series associated with these compositions are depicted in the third row of Figure 12. In
this example, the information retrieved by the alignment is twofold: on one hand, it stresses the
mere melodic and harmonic similarity. On the other hand, it retrieves common stylistic choices.
In both distance matrices, the scores associated with the same compositions are reasonably low,
highlighting their similarity in the case of Fly Me to the Moon and How High the Moon. An
exception is represented by the two versions of Caravan. The presence of rich solos in Caravan-
md distinguishes it neatly from the other interpretation of the standard. Note how an optimal
warping path between these two pieces depicted in Figure 11(b) tries to align them on the themes,
skipping the solo parts. Hence, the evolution in time of the persistence diagrams grasps the dif-
ference between an organised thematic flow, and a freer improvisational context. Moreover, we
notice how the three versions of Fly Me to the Moon is well separated from the three versions
of How High the Moon only utilising a 4-bars windowing. This feature is opposite to the one
characterising the analysis of the Pop dataset.
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6. Discussion and perspectives

We presented a method to compare time-varying systems by taking advantage of their geometric
and topological fingerprint provided by persistent homology.

If the two spaces and the filtering functions are comparable, DTW and an optimal warping
path between two kth persistence time series represent the timespans in which the properties
determined by the filtering functions, and thereafter fingerprinted as persistence diagrams, are
similar. Thus, it gives an encompassing view on the relative geometric behavior of the analyzed
systems, by highlighting possible irregular patterns in their geometric evolution.

The effectiveness of this dynamic fingerprint can be tested in many applications, such as ani-
mals tracking (Pérez-Escudero et al. 2014; Romero-Ferrero et al. 2019), group behaviour (Munch
2013; Topaz, Ziegelmeier, and Halverson 2015), and classical problems tackled with persistence
homology as covering of sensor network (Munch, Shapiro, and Harer 2012) and unfolding of
proteins (Cohen-Steiner, Edelsbrunner, and Morozov 2006).

The task of automatic stylistic classification of music is currently tackled in the field of Music
Information Retrieval (MIR) (Casey et al. 2008), being an innovative paradigm for the analysis
and classification of music compositions. Although the data used to deform the Tonnetz in our
application are deduced from MIDI transcriptions, thanks to the stability of persistence diagrams
with respect to the bottleneck distance, it is possible to generalize the algorithm to audio files,
for instance by performing a chroma analysis (Harte and Sandler 2005).

We gave a musical interpretation of the evolution in time of the persistence diagrams asso-
ciated with a composition and used DTW to provide an alignment of persistence time series.
Finally, we analyzed both an optimal warping path and the alignment score of collections of
classical (tonal, modal and atonal) compositions, pop songs endowed with different harmonic
complexity and a collection of jazz standards played by different ensembles, with different
arrangements and solo parts.

In order to interpret the evolution of a system in time as a collection of observations, we
defined a windowing, consisting of an even partition of the composition according to its subdi-
vision in bars. We saw how the three datasets we considered respond differently to changes of
this windowing. In musical terms, this corresponds to the pace at which musical concepts evolve
in the composition. The computation of an optimal time granularity necessary to describe the
evolution of compositions belonging to different genres or artists could be used as a new music
descriptor.

The dynamic Tonnetz has full memory of the composition: the heights of its vertices increases
monotonically. This feature does not reflect our perception of music, since we cannot remember
every note of a whole composition. The definition of a gravity function in opposition to the one
generating the deformation of the vertices can be used to endow this space with a type of short-
term memory. The same argument can be applied to the study of dynamical consonance-based
deformed Tonnetze. In addition, we can define a variable gravitational field (or equip the vertices
with variable masses) in order to diminish the effect of the gravity in correspondence of vertices
representing relevant elements of a musical phrase (for example, its higher, lower, first, ending,
and syncopated notes), we refer interested readers to Perricone (2000).

Given the simple structure of the persistence diagrams derived from the Tonnetz and the possi-
bility to provide their musical interpretation in this framework, persistence time series could
be replaced by continuous vineyards, in order to study the alignment between vineyards by
considering the minimal homotopy leading from one to the other.
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